Answer
The solution set is {n|n $\geq$ 12} , or [12,$\infty$) in interval notation.
Work Step by Step
$\frac{1}{2}$n + 2 $\leq$ $\frac{3}{4}$n - 1
Subtract $\frac{1}{2}$n from both sides.
2 $\leq$ $\frac{3}{4}$n -$\frac{1}{2}$n - 1
Add 1 to both sides.
3 $\leq$ $\frac{3}{4}$n -$\frac{1}{2}$n
3 $\leq$ $\frac{3}{4}$n -$\frac{1\ \times 2}{2\ \times\ 2}$n
3 $\leq$ $\frac{3}{4}$n -$\frac{2}{4}$n
3 $\leq$ $\frac{1}{4}$n
Multiply both sides by 4.
12 $\leq$ n
The solution set is {n|n $\geq$ 12} , or [12,$\infty$) in interval notation.