Answer
$= \frac{x^{2}y^{2}}{4}$
Work Step by Step
Simplify $\frac{-5}{-20}$:
$= \frac{5}{20}$
$= \frac{1}{4}$
Simplify $\frac{x^{4}y^{3}}{x^{2}y}$
1) Cancel $x^{2}$ from the denominator and numerator, leaving you with $x^{2}$ left in the numerator and $1$ in the denominator
2) Cancel $y$ from the denominator and numerator, leaving you with $y^{2}$ in the numerator and $1$ in the denominator
$= \frac{x^{2}y^{3}}{(1)y}$
$= \frac{x^{2}y^{2}}{(1)(1)}$
$= \frac{x^{2}y^{2}}{1}$
$= x^{2}y^{2}$
Multiply both components to obtain the answer:
$= \frac{1}{4}( x^{2}y^{2})$
$= \frac{x^{2}y^{2}}{4}$