Answer
{$4$}
Work Step by Step
Step 1: Comparing $x^{2}-8x+16=0$ to the standard form of a quadratic equation $ax^{2}+bx+c=0$;
$a=1$, $b=-8$ and $c=16$
Step 2: The quadratic formula is:
$x=\frac{-b \pm \sqrt {b^{2}-4ac}}{2a}$
Step 3: Substituting the values of a, b and c in the formula:
$x=\frac{-(-8) \pm \sqrt {(-8)^{2}-4(1)(16)}}{2(1)}$
Step 4: $x=\frac{8 \pm \sqrt {64-64}}{2}$
Step 5: $x=\frac{8 \pm \sqrt {0}}{2}$
Step 6: $x=\frac{8}{2}$
Step 7: $x=4$
Step 8: Therefore, the solution set is {$4$}.