Answer
a)
$P(10)=5010$
$P(20)=7040$
b) $203~people/year$
Work Step by Step
a) Plugging in $t=10,20$ into the population formula, we get:
$P(10)=3000+200(10)+0.1(10)^2=5010$
$P(20)=3000+200(20)+0.1(20)^2=7040$
These values represent the population in 1995 and 2005, respectively.
b) The rate of change is:
$\frac{f(y)-f(x)}{y-x}=\frac{7040-5010}{20-10}=203~people/year$
This value represents the average annual increase (people per year).