Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.4 - Solving Quadratic Equations by Completing the Square - Monitoring Progress - Page 507: 6

Answer

$g\approx 6.65$ and $g\approx 1.35$.

Work Step by Step

The given equation is $\Rightarrow 3g^2-24g+27=0$ Subtract $27$ from each side. $\Rightarrow 3g^2-24g+27-27=0-27$ Simplify. $\Rightarrow 3g^2-24g=-27$ Divide each side by $3$. $\Rightarrow \frac{3g^2-24g}{3}=\frac{-27}{3}$ Simplify. $\Rightarrow g^2-8g=-9$ Find the value of $(\frac{b}{2})^2$. Substitute $-8$ for $b$. $=(\frac{-8}{2})^2$ Simplify. $=(-4)^2$ $=16$ Add $16$ to each side of the equation. $\Rightarrow g^2-8g+16=-9+16$ Simplify. $\Rightarrow g^2-8g+16=7$ Write the left side as the square of a binomial. $\Rightarrow (g-4)^2=7$ Take the square root of each side. $\Rightarrow g-4=\pm \sqrt{7}$ Add $4$ to each side. $\Rightarrow g-4+4=\pm \sqrt{7}+4$ Simplify. $\Rightarrow g=\pm \sqrt{7}+4$ The solutions are $g= \sqrt{7}+4\approx 6.65$ and $g=- \sqrt{7}+4\approx 1.35$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.