Answer
$=x^2+10x+25$
$=(x+5)^2$
Work Step by Step
The given expression is
$=x^2+10x$
Find the value of $(\frac{b}{2})^2$.
Substitute $10$ for $b$.
$=(\frac{10}{2})^2$
Simplify.
$=(5)^2$
$=25$
Add $25$ to the given expression.
$=x^2+10x+25$
Write the the polynomial as $a^2+2ab+b^2$.
$=x^2+2(x)(5)+5^2$
Use perfect square trinomial pattern
$a^2+2ab+b^2=(a+b)^2$
We have $a=x$ and $b=5$.
$=(x+5)^2$