Answer
$a_{1}=3$, $a_{n}=2a_{n-1}+1$
Work Step by Step
First term $a_{1}=3$,
Let's look for a pattern. We note that
$a_{2}=7=2(3)+1=2a_{1}+1$
$a_{3}= 15=2(7)+1=2a_{2}+1$
$a_{4}=31=2(15)+1=2a_{3}+1$ and so on.
So, a recursive rule is
$a_{1}=3$, $a_{n}=2a_{n-1}+1$