Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 4 - Writing Linear Functions - 4.3 - Writing Equations of Parallel and Perpendicular Lines - Exercises - Page 192: 30

Answer

For parallel $a=-\frac{2}{3}$ For perpendicular $a=6$

Work Step by Step

The given equations of the lines are $6y=-2x+4$ ...... (1) $2y=ax-5$ ...... (2) Find the slope of the equation (1). $\Rightarrow 6y=-2x+4$ Divide each side by $6$. $\Rightarrow \frac{6y}{6}=\frac{-2x}{6}+\frac{4}{6}$ Simplify. $\Rightarrow y=-\frac{1}{3}x+\frac{2}{3}$ This is the slope form $y=mx+b$. The slope of the line is $m_1=-\frac{1}{3}$. Find the slope of the equation (2). $\Rightarrow 2y=ax-5$ Divide each side by $2$. $\Rightarrow \frac{2y}{2}=\frac{ax}{2}-\frac{5}{2}$ Simplify. $\Rightarrow y=\frac{a}{2}x-\frac{5}{2}$ This is the slope form $y=mx+b$. The slope of the line is $m_2=\frac{a}{2}$. Slopes are equal for parallel lines. $\Rightarrow m_1=m_2$ $\Rightarrow -\frac{1}{3}=\frac{a}{2}$ Solve for $a$. $\Rightarrow a=-\frac{2}{3}$ Slopes are negative reciprocal for perpendicular lines. $\Rightarrow m_2=-\frac{1}{m_1}$ $\Rightarrow \frac{a}{2}=-\frac{1}{(-\frac{1}{3})}$ Solve for $a$. $\Rightarrow a=6$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.