Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 9 - 9.2 - Two-Variable Linear Systems - 9.2 Exercises - Page 649: 70

Answer

$u=-\dfrac{\sin (2x) \csc x}{2}$ and $v=\dfrac{\cos (2x) \csc x}{2}$

Work Step by Step

Rewrite the first equation as: $u=\dfrac{-v \sin 2x}{\cos 2x}$ Substitute the value of $u$ in the first equation to get the value of $v$. $2v \times \dfrac{\sin^2 2x+\cos^2 2x}{\cos (2x)}=\sec x$ Therefore, the above equation yields: $\dfrac{2v}{\cos x}=\sec x \implies v =\dfrac{\cos (2x) \csc x}{2}$ Substitute the value of $v$ in the first equation to get the value of $u$. $u=\dfrac{-(\dfrac{\cos (2x) \csc x}{2}) \times \sin 2x}{\cos 2x}=-\dfrac{\sin (2x) \csc x}{2}$ So, the solution is $u=-\dfrac{\sin (2x) \csc x}{2}$ and $v=\dfrac{\cos (2x) \csc x}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.