Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 7 - 7.1 - Using Fundamental Identities - 7.1 Exercises - Page 514: 58

Answer

$sin~\theta=\pm\frac{\sqrt 3}{2}$ $cos~\theta=\frac{1}{2}$

Work Step by Step

$sin^2\theta+cos^2\theta=1$ $sin^2\theta=1-cos^2\theta$ $5\sqrt 3=\sqrt {100-x^2}$ $5\sqrt 3=\sqrt {100-100~cos^2\theta}$ $5\sqrt 3=\sqrt {100(1-cos^2\theta)}$ $5\sqrt 3=10\sqrt {sin^2\theta}~~~~$ (Square both sides) $75=100~sin^2\theta$ $sin^2\theta=\frac{75}{100}=\frac{3}{4}$ $sin~\theta=\pm\frac{\sqrt 3}{2}$ $sin^2\theta+cos^2\theta=1$ $cos^2\theta=1-\frac{3}{4}=\frac{1}{4}$ $cos~\theta=\pm\frac{1}{2}$ Since $-\frac{\pi}{2}\lt\theta\lt\frac{\pi}{2}$, $cos~\theta=\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.