Answer
$\frac{1}{2}\log_3x-2\log_3(y+8)=\log_3\frac{\sqrt x}{(y+8)^2}$
Work Step by Step
Use the Quotient Property and the Power Property:
$\frac{1}{2}\log_3x-2\log_3(y+8)=\log_3x^{\frac{1}{2}}-\log_3(y+8)^2=\log_3\sqrt x-\log_3(y+8)^2=\log_3\frac{\sqrt x}{(y+8)^2}$