Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 4 - 4.4 - Translations of Conics - 4.4 Exercises - Page 349: 81

Answer

$\dfrac{(x-3)^2}{9}-\dfrac{(y-2)^2}{4}=1$

Work Step by Step

The standard form of the equation of the hyperbola with a horizontal transverse axis can be expressed as: $\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1$ and vertices and foci have the form $(\pm a, 0) $ and $(\pm c,0)$. The standard form of the equation of the hyperbola with a vertical transverse axis can be expressed as: $\dfrac{(y-k)^2}{a^2}-\dfrac{(x-h)^2}{b^2}=1$ and vertices and foci have the form $(0, \pm, a) $ and $(0, \pm c)$. The center is the midpoint of the vertices : $(3,2)$ We have: $ a=3$ $\dfrac{(x-3)^2}{3^2}-\dfrac{(y-2)^2}{2^2}=1$ or, $\dfrac{(x-3)^2}{9}-\dfrac{(y-2)^2}{4}=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.