Answer
$1107 \ ft$
Work Step by Step
We are given that $v =28 \ ft/s$ and $s=100 \ ft$
Substitute this in the model:
$x^2 =(-\dfrac{v^2}{16}) (y- s)$
$x^2 =[-\dfrac{(198)^2}{16}] (y- 100)$
$x^2 =- 2450.25 (y- 500)$
Plug $y=0$ into the given model to compute the horizontal distance (x).
$x^2 =- 2450.25 (0- 500)$
or, $x^2 = 1225125$
or, $x \approx -1107, 1107$
Neglect negative values of distance.
So, our answer is: $x =1107 \ ft$