Answer
(a) The graph of the rational function intercepts the x-axis when $x=-2$ and $x=1$.
The x-intercepts are: $(-2,0)$ and $(1,0)$
(b) Algebraically $y=0$ when $x=-2$ and when $x=1$
The x-intercepts are: $(-2,0)$ and $(1,0)$
Work Step by Step
$y=x-\frac{2}{x+1}$
$0=x-\frac{2}{x+1}$
$x=\frac{2}{x+1}$
$x^2+x=2$
$x^2+x-2=0$
$x^2+2x-x-2=0$
$x(x+2)-1(x+2)=0$
$(x-1)(x+2)=0$
$x-1=0$
$x=1$
$x+2=0$
$x=-2$