Answer
a) $f(x)=[[x]]$
b) Vertical stretch, vertical shift
c) See graph
d) $g(x)=2f(x)-1$
Work Step by Step
We are given the function:
$g(x)=2[[x]]-1$
a) The parent function is:
$f(x)=[[x]]$
b) Vertically stretch $f(x)$ by a factor of $2$ to get $a(x)=2[[x]]$.
Vertically shift $a(x)$ one unit downward to get $g(x)=2[[x]]-1$
c) Graph the function $g$.
d) Use function notation to write $g$ in terms of $f$:
$g(x)=2f(x)-1$