Answer
$45x-0.15x^2$, where $x\gt 100$
Work Step by Step
The profit function $P(x)$ is a function of the revenue function $R(x)$ and the cost function $C(x)$.
Determine the revenue function:
$R(x)=[90-(x-100)(0.15)]x$
$=(90-0.15x+15)x$
$=(105-0.15x)x$
$=105x-0.15x^2$
Determine the cost function:
$C(x)=60x$
Determine the profit function:
$P(x)=105x-0.15x^2-60x$
$=45x-0.15x^2$, where $x\gt 100$