Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 11 - 11.7 - Probability - 11.7 Exercises - Page 837: 67c

Answer

$P_{n}=\frac{365-(n-1)}{365} P_{n-1}$

Work Step by Step

We look for a pattern. ( If we find one, using mathematical induction it should not present a problem to prove that the pattern is valid for all integers. We don't do this unless explicitly asked, though) $P_{1}=\frac{365}{365}=1 $ $P_{2}=\frac{365}{365} \cdot \frac{364}{365}=\frac{364}{365} P_{1}=\frac{365-(2-1)}{365} P_{1} \\ P_{3}=\frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365}=\frac{363}{365} P_{2}=\frac{365-(3-1)}{365} P_{2}$ From the suggested pattern, we conclude $P_{n}=\frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \cdots \frac{365-(n-1)}{365}=\frac{365-(n-1)}{365} P_{n-1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.