Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 10 - 10.3 - The Inverse of a Square Matrix - 10.3 Exercises - Page 735: 56

Answer

$x= -1; y= 2; z= 0$

Work Step by Step

A system of equations can be written in the form: $AX=B$ where $B= \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ When there exists an inverse of a matrix, the following relationship is true: $A A^{-1} = I$ Thus, $X=A^{-1} B = \begin{bmatrix} 2& 3 & 5 \\ 3 & 5 & 9 \\ 5 & 9 & 17 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \\ 13 \end{bmatrix} $ Now, we will use the Row Reduced Echelon Form. $X= \begin{bmatrix} 1 & 0 & -2 & : & -1 \\ 0 & 1 & 3 & : & 2 \\0 & 0 & 0 & : & 0 \end{bmatrix}$ Therefore, $x= -1; y= 2; z= 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.