Answer
See below
Work Step by Step
We will use this formula $y=kx+l$
The two coordinates of Oak Lane are $(-2,1)$ and $(5,0)$
Substitute: $1=-2k-5k\\-7k=1\\k=-\frac{1}{7}\\
\rightarrow l=\frac{5}{7}$
The equation will be: $y=-\frac{1}{7}x+\frac{5}{7}$
The condition is $x^2+y^2\leq1$