Answer
See below
Work Step by Step
The standard form of an ellipse is $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$
where $a$ is half the total width and $b$ is a length of the minor axis.
Plugging in $a=\frac{110}{2}=55\\b=\frac{135}{2}=67.5$ for the smallest value we get:
$$\frac{x^2}{55^2}+\frac{y^2}{67.5^2}=1$$
Plugging in $a=\frac{155}{2}=77.5\\b=\frac{185}{2}=92.5$ for the largest value we get:
$$\frac{x^2}{77.5^2}+\frac{y^2}{92.5^2}=1$$
The area of an ellipse is $V=\pi ab$
Obtain $\pi(55)(67.5) \leq A \leq \pi (77.5)(92.5)\\3712.5 \pi \leq A\leq7168.75 \pi\\11663.2 \leq A \leq 22521.3$