Answer
Focus: $\left(\frac{3}{4},0\right)$
Directrix: $x=-\frac{3}{4}$
Axis of symmetry: $x$-axis
Work Step by Step
$\bf{Step\text{ }1}$
Bring the equation in standard form:
$$\begin{align*}
x&=\dfrac{1}{3}y^2&&\text{Write the original equation.}\\
3x&=y^2&&\text{Multiply by }3.
\end{align*}$$
$\bf{Step\text{ }2}$
We identify the focus, directrix and axis of symmetry. The equation has the form $y^2=4px$, where $p=\frac{3}{4}$. The $\bf{focus}$ is $(p,0)$ or $\left(\frac{3}{4},0\right)$. The $\bf{directrix}$ is $x=-p$ or $x=-\frac{3}{4}$. Because $y$ is squared, the $\bf{axis\text{ } of\text{ }symmetry}$ is the $x$-axis.
$\bf{Step\text{ }3}$
We $\bf{draw}$ the parabola by making a table of values and plotting points. As $p>0$, the parabola opens to the right. So we will use only positive $x$-values.
\[ \begin{array}{cccccc}
x &|& 1 &|& 2 &|& 3 &|& 4 &|& 5 &|&\\
y &|& \pm 1.73 &|& \pm 2.45 &|& \pm 3 &|& \pm 3.46 &|& \pm 3.87 &|&\\
\end{array}\]