Answer
See below
Work Step by Step
Let $x=\log_b m\\y=\log_b n$
Rewrite as: $b^x=m\\b^y=n$
Obtain: $\log_b{mn}=\log_b b^xb^y=\log_b b^x b^y=\log_b b^{x+y}=(x+y)\log_b b$
Thus, $x+y=\log_b m+\log_b n\\
\rightarrow \log_b mm=\log_b m+\log_b n$