Answer
$\approx391.05$ minutes
Work Step by Step
Plugging in $k=0.04,h_0=6.5,h=0,r=0.875$ into the formula we get: $0.875=\sqrt{\frac{0.04t}{\pi(6.5-0)}}=\sqrt{\frac{0.04t}{\pi(6.5)}}\\0.766\approx\frac{0.04t}{\pi(6.5)}\\15.642\approx0.04t\\391.05\approx t$