Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 6 Rational Exponents and Radical Functions - 6.4 Use Inverse Functions - Guided Practice for Examples 4 and 5 - Page 441: 7

Answer

$f^{-1}(x)=-\dfrac{5}{4}\sqrt[3]x$

Work Step by Step

We are given the function: $$f(x)=-\dfrac{64}{125}x^3.$$ Find the inverse of the function: $$\begin{align*} f(x)&=-\dfrac{64}{125}x^3\quad&&\text{Write original function.}\\ y&=-\dfrac{64}{125}x^3\quad&&\text{Replace }f(x)\text{ by }y.\\ x&=-\dfrac{64}{125}y^3\quad&&\text{Switch }x\text{ and }y.\\ -\dfrac{125}{64}x&=y^3\quad&&\text{Multiply each side by }-\dfrac{125}{64}.\\ -\dfrac{5}{4}\sqrt[3]x&=y\quad&&\text{Take cubic root of each side.} \end{align*}$$ The inverse of $f$ is $f^{-1}(x)=-\dfrac{5}{4}\sqrt[3]x$. Graph the function and its inverse:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.