Answer
${\frac{1}{x^4}}$
Work Step by Step
Given: $(\sqrt[3] x^2.\sqrt[6] x^4)^{-3}=(x^{\frac{2}{3}}.x^{\frac{2}{3}})^{-3}$
Apply the Product of a Power Property: $x^{\frac{2}{3}}.x^{\frac{2}{3}}=x^{\frac{2}{3}+\frac{2}{3}}=x^{\frac{4}{3}}$
The expression becomes: $(x^{\frac{4}{3}})^{-3}=x^{\frac{4}{3}\times(-3)}=x^{-4}$
Apply the Negative Exponent Property: $x^{-4}={\frac{1}{x^4}}$
Hence, the expression becomes ${\frac{1}{x^4}}$