Answer
There are 8 possible rational zeros.
Work Step by Step
The constant terms: $\pm 1,\pm 3,\pm 9$
The leading coefficients: $\pm 1, \pm3,\pm 5,\pm 15$
The possible rational zeros are: $\pm \frac{1}{1},\pm \frac{3}{1},\pm \frac{9}{1},\pm \frac{1}{3},\pm \frac{3}{3},\pm \frac{9}{3},\pm \frac{1}{5},\pm \frac{3}{5},\pm \frac{9}{5},\pm \frac{1}{15},\pm \frac{1}{5},\pm \frac{3}{15}\pm \frac{9}{15}$
Simplify: $\pm 1, \pm 3,\pm 9, \pm \frac{1}{3},\pm 1, \pm 3,\pm \frac{1}{5},\pm \frac{3}{5},\pm \frac{9}{5},\pm \frac{1}{15},\pm \frac{1}{5},\pm \frac{3}{5}$
The rational zeros are: $\pm 1, \pm 3,\pm 9, \pm \frac{1}{3},\pm 1, \pm 3,\pm \frac{1}{5},\pm \frac{3}{5},\pm \frac{9}{5},\pm \frac{1}{15}$
Thus, there are 8 possible rational zeros.