Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 5 Polynomials and Polynomial Functions - 5.8 Analyze Graphs of Polynomial Functions - 5.8 Exercises - Skill Practice - Page 391: 33

Answer

$x^3-2x^2-8x$ $x^4-2x^3-8x^2$ $x^5-2x^4-8x^3$

Work Step by Step

A cubic function with $3$ given $x$-intercepts $x_1,x_2,x_3$ can be written in the form: $$f(x)=a(x-x_1)(x-x_2)(x-x_3),$$ where $a$ is an arbitrary real number. For example, for $a=1$: $$\begin{align*} f(x)&=(x-(-2))(x-0)(x-4)\\ &=(x+2)x(x-4)\\ &=(x^2+2x)(x-4)\\ &=x^3-4x^2+2x^2-8x\\ &=x^3-2x^2-8x. \end{align*}$$ A quartic function with $3$ given $x$-intercepts $x_1,x_2,x_3$ can be written in the form: $$f(x)=a(x-x_1)^2(x-x_2)(x-x_3),$$ where $a$ is an arbitrary real number. For example, for $a=1, x_1=0, x_2=-2,x_3=4$: $$\begin{align*} f(x)&=(x-0)^2(x-(-2))(x-4)\\ &=x^2(x+2)(x-4)\\ &=x^2(x^2-2x-8)\\ &=x^4-2x^3-8x^2. \end{align*}$$ A fifth-degree function with $3$ given $x$-intercepts $x_1,x_2,x_3$ can be written in the form: $$\begin{align*} f(x)&=a(x-x_1)^2(x-x_2)^2(x-x_3)\text{ or}\\ f(x)&=a(x-x_1)^3(x-x_2)^2(x-x_3). \end{align*}$$ where $a$ is an arbitrary real number. For example, for $a=1, x_1=0, x_2=-2,x_3=4$: $$\begin{align*} f(x)&=(x-0)^3(x-(-2))(x-4)\\ &=x^3(x+2)(x-4)\\ &=x^3(x^2-2x-8)\\ &=x^5-2x^4-8x^3. \end{align*}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.