Answer
See below
Work Step by Step
The leading coefficients: $\pm 1$
The constant terms: $\pm 1,\pm2, \pm 3,\pm 4,\pm 6,\pm 8, \pm 12,\pm 24,\pm 43,\pm 86,\pm 129,\pm 172, \pm258,\pm 344,\pm 516,\pm 1032$
The possible rational zeros are: $\pm\frac{1}{1},\pm \frac{2}{1},\pm \frac{3}{1},\pm \frac{4}{1},\pm \frac{6}{1},\pm\frac{8}{2},\pm \frac{12}{1},\pm \frac{24}{1},\pm \frac{43}{1},\pm \frac{86}{1},\pm \frac{129}{1},\pm \frac{172}{1},\pm \frac{258}{1}$
Simplify: $\pm 1,\pm2, \pm 3,\pm 4,\pm 6,\pm 8, \pm 12,\pm 24,\pm 43,\pm 86,\pm 129,\pm 172, \pm258,\pm 344,\pm 516,\pm 1032$
The possible solutions that are whole numbers less than 10: $1,2,3,4,6,8$