Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 5 Polynomials and Polynomial Functions - 5.2 Evaluate and Graph Polynomial Functions - 5.2 Exercises - Skill Practice - Page 342: 52

Answer

$-480$

Work Step by Step

A cubic polynomial function can be written as: $$f(x)=ax^3+bx^2+cx+d.$$ Since the leading coefficient is $2$, it means $a=2$. Since the constant term is $-5$, it means $d=-5$. $$f(x)=2x^3+bx^2+cx-5.$$ Now we construct a system of equations using $ f(1)=0$ and $f(2)=3$: $$\begin{cases} 2(1^3)+b(1^2)+c(1)-5=0\\ 2(2^3)+b(2^2)+c(2)-5=3. \end{cases}$$ $$\begin{cases} 2+b+c-5=0\\ 16+4b+2c-5=3. \end{cases}$$ $$\begin{cases} b+c=3\\ 4b+2c=-8. \end{cases}$$ Solve the system: $$\begin{cases} -2b-2c=-6\\ 4b+2c=-8. \end{cases}$$ $$2b=-14\Rightarrow b=-7$$ $$-7+c=3\Rightarrow c=10.$$ The polynomial is: $$f(x)=2x^3-7x^2+10x-5.$$ Calculate $f(-5)$: $$f(-5)=2(-5)^3-7(-5)^2+10(-5)-5=-480.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.