Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 4 Quadratic Functions and Factoring - Chapter Review - Page 322: 48

Answer

$f(x)=-\frac{7}{144}(x-12)^2+7$.

Work Step by Step

If the vertex of a graph is at (m,n), then the general formula for the quadratic function is $f(x)=a(x-m)^2+n$. The vertex of the graph is at (12,7), hence the quadratic function becomes $f(x)=a(x-12)^2+7$. The point (0,0) is on the graph, hence if we plug in the values we get 0=144a+7. $a=-\frac{7}{144}$, hence $f(x)=-\frac{7}{144}(x-12)^2+7$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.