Answer
$2$ solutions if $-64\lt c$, one solution if $-64=c$, and no solution if $-64\gt c$.
Work Step by Step
The discriminant is $D=b^2-4ac$. If $D\gt0$ we have $2$, if $D=0$ we have one, and if $D\lt0$ we have no solution.
Hence here $D=256+4c$. $256+4c\gt0\\256\gt-4c\\-64\lt c.$
$256+4c=0\\256=-4c\\-64= c.$
$256+4c\lt0\\256\lt-4c\\-64\gt c.$
Thus we have $2$ solutions if $-64\lt c$, one solution if $-64=c$, and no solution if $-64\gt c$.