Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 3 Linear Systems and Matrices - 3.5 Perform Basic Matrix Operations - 3.5 Exercises - Skill Practice - Page 191: 29

Answer

$A=\begin{bmatrix}4&3\\4&1\end{bmatrix},B=\begin{bmatrix}1&2\\3&0\end{bmatrix}$

Work Step by Step

In order to find two matrices $A$, $B$ so that the given equation is checked, we will take an arbitrary matrix $B$ and determine the matrix $A$. (We could also take a random matrix $A$ and calculate $B$.) The two matrices must be $2\times 2$. $$B=\begin{bmatrix}1&2\\3&0\end{bmatrix}$$ We have: $$\begin{align*} 2A-3\begin{bmatrix}1&2\\3&0\end{bmatrix}&=\begin{bmatrix}5&0\\-1&2\end{bmatrix}\\ 2A-\begin{bmatrix}3&6\\9&0\end{bmatrix}&=\begin{bmatrix}5&0\\-1&2\end{bmatrix}\\ 2A&=\begin{bmatrix}5&0\\-1&2\end{bmatrix}+\begin{bmatrix}3&6\\9&0\end{bmatrix}\\ 2A&=\begin{bmatrix}8&6\\8&2\end{bmatrix}\\ A&=\begin{bmatrix}4&3\\4&1\end{bmatrix}. \end{align*}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.