Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 3 Linear Systems and Matrices - 3.4 Solve Systems of Linear Equations in Three Variables - 3.4 Exercises - Skill Practice - Page 183: 36

Answer

$x=-\dfrac{1}{2}$; $y=1$; $z=1$;

Work Step by Step

First of all we clear denominators by multiplying the first equation by $6$, the second by $12$ and the third by $6$: We have to solve the system: $$\begin{align*} \begin{cases} 2x+5y+4z&=8\quad&\text{Equation }1\\ 2x+8y+3z&=10\quad&\text{Equation }2\\ 4x+y+9z&=8\quad&\text{Equation }3. \end{cases} \end{align*}$$ We rewrite the system as a linear system in $\textit{two}$ variables: $$\begin{align*} -2x-5y-4z&=-8\quad\quad\text{Add }-1\text{ times Equation }1\\ 2x+8y+3z&=10\quad\quad\text{to Equation }2.\\ \text{___________}&\text{______}\\ 3y-z&=2\quad\quad\quad\text{New Equation }1. \end{align*}$$ $$\begin{align*} -4x-10y-8z&=-16\quad\text{Add }-2\text{ times Equation }1\\ 4x+y+9z&=8\quad\quad\text{to Equation }3.\\ \text{___________}&\text{______}\\ -9y+z&=-8\quad\quad\text{New Equation }2. \end{align*}$$ We solve the new linear system for both its variables: $$\begin{align*} 3y-z&=2\quad\quad\text{Add new Equation }1\\ -9y+z&=-8\quad\text{to new Equation }2.\\ \text{___________}&\text{______}\\ -6y&=-6\\ y&=1\quad\text{Solve for }y.\\ z&=1\quad\text{Substitute into new Equation }1\text{ to find }z. \end{align*}$$ Substitute $y=1$ and $z=1$ into an original equation and solve for $x$: $$\begin{align*} 2x+5y+4z&=8\quad\text{Write original Equation }1.\\ 2x+5(1)+4(1)&=8\quad\text{Substitute }y=1\text{ and }z=1.\\ x&=-\dfrac{1}{2}\quad\text{Solve for }x.\\ \end{align*}$$ The solution is $x=-\dfrac{1}{2}, y=1,z=1$ or the ordered triple $\left(-\dfrac{1}{2},1,1\right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.