Answer
Use points $(0,b)$ and $(1,m+b)$ to calculate the slope
Work Step by Step
Let $y=mx+b$ be the equation of a line. Its slope $s$ is given by the formula:
$$s=\dfrac{y_2-y_1}{x_2-x_1},$$
where $(x_1,y_1)$ and $(x_2,y_2)$ are two points on the line.
Let's consider the points on our line:
$$\begin{align*}
x&=0\Rightarrow y=m(0)+b=b\Rightarrow (0,b)\\
x&=1\Rightarrow y=m(1)+b=m+b\Rightarrow (1,m+b).
\end{align*}$$
We apply the slope formula using the points $(0,b)$ and $(1,m+b)$:
$$s=\dfrac{m+b-b}{1-0}=m.$$
Therefore the slope of the line is $m$.