Answer
$x =2 n \pi \pm \dfrac{\pi}{2}$ and $x =n \pi + (-1)^n \dfrac{\pi}{4}$
Work Step by Step
Re-arrange the given equation as:
$\sqrt 2 \cos x(\sin x-\dfrac{1}{\sqrt 2})=0$
When $\sqrt 2 \cos x=0$
Therefore, the general solution of $\cos x$ is:
$x =2 n \pi \pm \dfrac{\pi}{2}$
when $\sin x=\dfrac{1}{\sqrt 2}$
Therefore, the general solution of $\cos x$ is:
$x =n \pi + (-1)^n \dfrac{\pi}{4}$