Answer
See below
Work Step by Step
The sum of the angles of the triangle is $180^\circ$
$$A+B+C=180^\circ\\B=180^\circ-A-C\\B=180^\circ-83^\circ-59^\circ\\B=38^\circ$$
Use the law of sines:
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{y\sin C}$$
First we obtain: $\frac{a}{\sin A}=\frac{c}{\sin C}\\a=\frac{c}{\sin C}\times \sin A\\a=\frac{24}{y\sin 59^\circ}\times\sin 83^\circ \approx 28.9^\circ$
The formula for the area is: $=\frac{1}{2}ac\sin B=\frac{1}{2}(\frac{24}{\sin 59^\circ}\sin83^\circ)\times 24 \times \sin 38^\circ\approx205.31$