Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.5 Apply the Law of Sines - 13.5 Exercises - Skill Practice - Page 887: 39

Answer

See below

Work Step by Step

The sum of the angles of the triangle is $180^\circ$ $$A+B+C=180^\circ\\B=180^\circ-A-C\\B=180^\circ-83^\circ-59^\circ\\B=38^\circ$$ Use the law of sines: $$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{y\sin C}$$ First we obtain: $\frac{a}{\sin A}=\frac{c}{\sin C}\\a=\frac{c}{\sin C}\times \sin A\\a=\frac{24}{y\sin 59^\circ}\times\sin 83^\circ \approx 28.9^\circ$ The formula for the area is: $=\frac{1}{2}ac\sin B=\frac{1}{2}(\frac{24}{\sin 59^\circ}\sin83^\circ)\times 24 \times \sin 38^\circ\approx205.31$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.