Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 12 Sequences and Series - Investigating Algebra Activity - 12.5 Exploring Recursive Rules - Draw Conclusions - Page 826: 4

Answer

For an arithmetic sequence, $a_{n}=a_{n-1}+d.$ For a geometric sequence, $a_{n}=r\cdot a_{n-1}.$

Work Step by Step

For an arithmetic sequence, the terms $a_{n}$ and $a_{n-1}$ are such that $ a_{n}-a_{n-1}=d,\qquad$ ... They share a common difference between consecutive terms ... Adding $a_{n-1}$ to the equation, we obtain $a_{n}=a_{n-1}+d$ For a geometric sequence, the terms $a_{n}$ and $a_{n-1}$ are such that $\displaystyle \frac{a_{n}}{a_{n-1}}=r,\qquad$ ... They share a common ratio between consecutive terms ... Multiplying the equation with $a_{n-1}$, we obtain $a_{n}=r\cdot a_{n-1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.