Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 12 Sequences and Series - Chapter Review - Page 841: 12

Answer

$285$

Work Step by Step

The sum of the first $n$ terms of an arithmetic sequence can be obtained by the following formula: $\frac{n(a_1+a_n)}{2},$ where $a_1$ is the first term, $a_n$ is the nth term and $n$ is the number of terms. The nth term of an arithmetic sequence can be obtained by the following formula: $a_n=a_1+(n-1)d$, where $a_1$ is the first term and $d$ is the common difference. Hence here: $d=2,n=15,a_1=3+2(1)=5,a_{15}=3+2(15)=33$ Thus the sum:$\frac{15(5+33)}{2}=285$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.