Answer
$210$
Work Step by Step
Here, we have $\sum_{i=2}^{8} 1+\sum_{i=2}^{8} i^2=8-1+\sum_{i=2}^{8} i^2$
$=7+\sum_{i=2}^{8} i^2$
Use a summation formula such as: $\sum_{i=2}^{8} i^2=\dfrac{n(n+1)(2n+1)}{6}$
Now, $7+\sum_{i=2}^{8} i^2=7+\dfrac{8(8+1)(2\times 8+1)}{6}=6+204=210$