Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 10 Counting Methods and Probability - 10.6 Construct and Interpret Binomial Distributions - 10.6 Exercises - Skill Practice - Page 728: 34

Answer

See below

Work Step by Step

The standard formula: $P(number-of-successes)=\frac{n!}{(n-k)!k!}.p^k(1-p)^{n-k}$ Substituting $p=0.5,n=6,k=0$ we have: $P(0)=\frac{6!}{(6-0)!0!}.(0.5)^0(1-0.5)^{6-0}\approx0.0156$ Substituting $p=0.5,n=6,k=1$ we have: $P(1)=\frac{6!}{(6-1)!1!}.(0.5)^1(1-0.5)^{6-1}\approx0.0938$ Substituting $p=0.5,n=6,k=2$ we have: $P(2)=\frac{6!}{(6-2)!2!}.(0.5)^2(1-0.5)^{6-2}\approx0.2344$ Substituting $p=0.5,n=6,k=3$ we have: $P(3)=\frac{6!}{(6-3)!3!}.(0.5)^3(1-0.5)^{6-3}\approx0.3125$ Substituting $p=0.5,n=6,k=4$ we have: $P(4)=\frac{6!}{(6-4)!0!}.(0.5)^4(1-0.5)^{6-4}\approx0.2344$ Substituting $p=0.5,n=6,k=5$ we have: $P(5)=\frac{6!}{(6-5)!5!}.(0.5)^5(1-0.5)^{6-5}\approx0.0938$ Substituting $p=0.5,n=6,k=6$ we have: $P(6)=\frac{6!}{(6-6)!6!}.(0.5)^6(1-0.5)^{6-6}\approx0.0156$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.