Answer
See below
Work Step by Step
The standard formula: $P(number-of-successes)=\frac{n!}{(n-k)!k!}.p^k(1-p)^{n-k}$
Substituting $p=0.3,n=10,k=0$ we have:
$P(0)=\frac{10!}{(10-0)!0!}.(0.3)^0(1-0.3)^{13-0}\approx0.0283$
Substituting $p=0.3,n=10,k=1$ we have: $P(1)=0.121$
Substituting $p=0.3,n=10,k=2$ we have: $P(2)=0.2335$
Substituting $p=0.3,n=10,k=3$ we have: $P(1)=0.2668$
Substituting $p=0.3,n=10,k=4$ we have: $P(4)=0.2001$
Substituting $p=0.3,n=10,k=5$ we have: $P(1)=0.1029$
Substituting $p=0.3,n=10,k=6$ we have: $P(6)=0.0368$
Substituting $p=0.3,n=10,k=7$ we have: $P(1)=0.009$
Substituting $p=0.3,n=10,k=8$ we have: $P(1)=0.00145$
Substituting $p=0.3,n=10,k=9$ we have: $P(1)=0.0001378$
Substituting $p=0.3,n=10,k=10$ we have: $P(10)=0.0000059$