Answer
$24c^{4}+72c^{2} + 54$
Work Step by Step
The surface area of a cube can be found using the equation:
A=6$L^{2}$
A side length of the cube is 2$c^{2}$+3 and we substitute it into the equation above.
A=6$(2c^{2}+3)^{2}$
We use the rule of (a+b)^{2} = a^{2} + 2ab + b^{2} for $(2c^{2}+3)^{2}$
A=6($(2c^{2})^{2}+2(2c^{2})(3) + 3^{2}$)
A=6($4c^{4}+12c^{2} + 9$)
We distribute the 6 into the parenthesis.
A=$24c^{4}+72c^{2} + 54$