Answer
$110$ acres of corn
$70$ acres of tomatoes
$140$ acres of sunflowers
Work Step by Step
Let the number of acres of corn be $x$ , the number of acres of tomatoes be $y$ , and the number of acres of sunflowers be $z$
Since we have three variables, we need to set up a system of three equations.
We know the farmer has 320 acres, and he is going to use all of them, so our first equation can be $x+y+z=320$
We also know that the farmer wants to plant twice as many acres of tomatoes as acres of sunflowers, so our second equation can be $2y=z$
We also know that the farmer wants to plant $40$ more acres of corn than tomatoes, so our third equation can be $y=x-40$
Now we have our system of equations:
$x+y+z=320$
$2y=z$
$y=x-40$
We can substitute the third equation into the second and first equation to reduce the number of variables from three to two.
$x+(x-40)+z=320$
$2(x-40)=2x-80=z$
Since $z$ is already isolated, we can substitue the second equation into the first equation to reduce our system from two variables to one variable.
$x+(x-40)+(2x-80)=320$
Now reduce and combine like terms to solve for $x$
$x+(x-40)+(2x-80)=320$
$x+x-40+2x-80=320$
$x+x+2x-40-80=320$
$4x-120=320$
$4x=440$
$x=110$
Now substitute $x$ into our original third equation to solve for $y$
$y=(110)-40$
$y=70$
Now substitute $y$ into our original second equation to solve for $z$
$2(70)=z$
$z=140$
To recap:
$x=110$ - the number of acres of corn
$y=70$ - the number of acres of tomatoes
$z=140$ - the number of acres of sunflowers