Answer
$s\lt5.5$
Work Step by Step
$\frac{4}{3}s-3\lt s+\frac{2}{3}-\frac{1}{3}s\longrightarrow$ combine like terms
$\frac{4}{3}s-3\lt \frac{2}{3}s+\frac{2}{3}\longrightarrow$ subtract $\frac{2}{3}s$ from each side
$\frac{4}{3}s-3-\frac{2}{3}s\lt \frac{2}{3}s+\frac{2}{3}-\frac{2}{3}s\longrightarrow$ subtract
$\frac{2}{3}s-3\lt\frac{2}{3}\longrightarrow$ add 3 to each side
$\frac{2}{3}s-3+3\lt\frac{2}{3}+3\longrightarrow$ add
$\frac{2}{3}s\lt3\frac{2}{3}\longrightarrow$ multiply each side by $\frac{3}{2}$
$\frac{2}{3}s\times\frac{3}{2}\lt3\frac{2}{3}\times\frac{3}{2}\longrightarrow$ multiply
$s\lt5.5$