Answer
x = 11$\frac{1}{3}$
y = 10$\frac{2}{3}$
Work Step by Step
$\frac{1}{3}y$ - $\frac{2}{3}x$ = -4 (Equation 1)
5x - 4y = 14 (Equation 2)
Multiply equation (1) by 3
y - 2x = -12 (Equation 3)
5x - 4y = 14
Multiply equation (1) by 4
4y - 8x = -48
5x - 4y = 14
Rearrange to make y the subject
4y = 8x - 48
4y= 5x - 14
Therefore:
8x - 48 = 5x - 14
3x = 34
x = 11$\frac{1}{3}$
Substitute x in a previous equation to find y:
y - 2x = -4 (Rearranged to =>) y = -12 + 2x
y = -12 + 2(11$\frac{1}{3}$)
y = 10$\frac{2}{3}$
Proof:
$\frac{1}{3}$(10$\frac{2}{3}$) - $\frac{2}{3}$(11$\frac{1}{3}$) = -4
5(11$\frac{1}{3}$)-4(10$\frac{2}{3}$) = 14