Algebra 1

Published by Prentice Hall
ISBN 10: 0133500403
ISBN 13: 978-0-13350-040-0

Chapter 11 - Rational Expressions and Functions - Chapter Review - 11-2 and 11-3 Multiplying adn Dividing Rational Expressions and Dividing Polynomials - Page 704: 16

Answer

$(2b^2+b+3)\text{ in.}$

Work Step by Step

Using $A=lw$ or the formula for the area, $A$, of a rectangle with length $(l)$ and width $(w)$, then $$\begin{aligned} A&=lw \\ 4b^3+5b-3&=l(2b-1) \\ l&=\frac{4b^3+5b-3}{2b-1} .\end{aligned}$$ Using long division, then $$\begin{array}{l} \phantom{d+3)^2}2b^2+\phantom{2}b+\phantom{5}3 \\ \color{blue}{2b-1}\color{black}{\overline{\big)4b^3\phantom{-2b^2}+5b-3}} \\ \phantom{2b-1)}\underline{4b^3-2b^2} \\ \phantom{2b-1)4b^3-\,}2b^2+5b \\ \phantom{2b-1)4b^3-}\underline{\,2b^2-\phantom{5}b} \\ \phantom{2b-1)4b^3-2b^2+}6b-3 \\ \phantom{2b-1)4b^3-2b^2+}\underline{6b-3} \\ \color{red} {\phantom{2b-1)4b^3-2b^2+4b-}0} \end{array}$$Hence, the length of the rectangle is $$ (2b^2+b+3)\text{ in.} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.