Algebra 1

Published by Prentice Hall
ISBN 10: 0133500403
ISBN 13: 978-0-13350-040-0

Chapter 11 - Rational Expressions and Functions - 11-3 Dividing Polynomials - Practice and Problem-Solving Exercises - Page 671: 58

Answer

$10r^5+2r^4+5r^2$

Work Step by Step

The long division method below shows the result of $ (90r^6+28r^5+45r^3+2r^4+5r^2)\div(9r+1) .$ $$\begin{array}{l} \phantom{5x-y)}10r^5+\phantom{2}2r^4\phantom{+2r^4\,\,}+\phantom{4}5r^2 \\ \color{blue}{9r+1}\color{black}{\overline{\smash{)}90r^6+28r^5+2r^4+45r^3+5r^2}} \\ \phantom{9r+1)}\underline{90r^6+10r^5} \\ \phantom{9r+1)90r^6+}18r^5+2r^4 \\ \phantom{9r+1)90r^6+}\underline{18r^5+2r^4} \\ \phantom{9r+1)90r^6+18r^5+2}0+45r^3+5r^2 \\ \phantom{9r+1)90r^6+18r^5+20\,+}\underline{45r^3+5r^2} \\ \color{red}{\phantom{9r+1)90r^6+18r^5+20\,+45r^3+5}0} \end{array}$$Hence, the quotient is $10r^5+2r^4+5r^2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.