Algebra 1

Published by Prentice Hall
ISBN 10: 0133500403
ISBN 13: 978-0-13350-040-0

Chapter 11 - Rational Expressions and Functions - 11-3 Dividing Polynomials - Mixed Review - Page 671: 67

Answer

$\frac{(x+5)(x+4)^2}{(x+8)^2(x+7)}$

Work Step by Step

In factored form, the given is equivalent to $$ \frac{(x+5)(x+4)}{(x+8)(x-3)}\div\frac{(x+8)(x+7)}{(x+4)(x-3)} .$$ Multiplying by the reciprocal of the divisor, the expression above is equivalent to $$ \frac{(x+5)(x+4)}{(x+8)(x-3)}\cdot\frac{(x+4)(x-3)}{(x+8)(x+7)} .$$ Cancelling factors that are common to both the numerator and the denominator, the expression above is equivalent to $$\begin{aligned} & \frac{(x+5)(x+4)}{(x+8)\color{red}{(x-3)}}\cdot\frac{(x+4)\color{red}{(x-3)}}{(x+8)(x+7)} \\&= \frac{(x+5)(x+4)(x+4)}{(x+8)(x+8)(x+7)} \\&= \frac{(x+5)(x+4)^2}{(x+8)^2(x+7)} .\end{aligned}$$Hence, the given expression simplifies to $\frac{(x+5)(x+4)^2}{(x+8)^2(x+7)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.