Answer
To complete the square, we will add $\dfrac{25}{16}$ on both sides.
Roots of $x$ are: $x=0.64, -3.14$
Work Step by Step
$4x^2+10x=8$
or, $x^2+\frac{10}{4}x=2$
Compare it with the standard form of quadratic equation $ax^2+bx+c$, we have $a=1, b=\frac{10}{4}$
To complete the square, add $\dfrac{25}{16}$ on both sides.
$x^2+\dfrac{10}{4}x+\dfrac{25}{16}=2+\dfrac{25}{16}$
$\implies (x+\dfrac{5}{4})^2=\dfrac{57}{16}$
$\implies (x+1.25)^2=3.56$
$\implies (x+1.25)=1.89$
and
$\implies (x+1.25)=-1.89$
or, $x=0.64, -3.14$
To complete the square, we will add $\dfrac{25}{16}$ on both sides.
Roots of $x$ are: $x=0.64, -3.14$