Answer
We will use the formula of slope which is given by
$m=y(2_{})-y(1)/x(2)-x(1)$.
Work Step by Step
Let $x$ be the temperature in Fehrenhitee.
And $y$ be the temperature in celsius.
Hence for the given point$(50,10)$ and$(77,25)$ calculate the slope of the line using the slope formula-
$m=25-10/77-50$
On solving
$m=15/27$
$m=5/9$.
Insert the values of $m=5/9$ , x=50 and y=10 into the slope-intercept formula.
We get
$10=\frac{5}{9}\times50+b$
$10=\frac{250}{9}+b$
$b=\frac{-160}{9}$.
Now insert the value of $m=\frac{5}{9}$ and$b=\frac{-160}{9}$into the slope intercept form.
$y=\frac{5}{9}x-\frac{160}{9}$
As $x=59$
$y=\frac{5}{9}59-\frac{160}{9}$
$y=\frac{295}{9}-\frac{160}{9}$
$y=15$
The relationship between the F and C, where$x$ represents the temperature in Fahrenheit and $y$ represents the temperature in celsius.
$x=\frac{9}{5}y+32$
When the temperature is 59 degrees F, it is 15 degrees celsius.